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Abstract. The second-order and fourth-order frequency sum rules of the velocity
autocorrelation function (VACF) of Rb have been evaluated for six thermodynamic states along
the liquid–vapour coexistence curve by using the Ashcroft pseudopotential and corresponding
pair distribution function obtained by molecular dynamics (MD) simulation. These sum rules
and a model for the self-diffusion coefficient have been used to study the time evolution of
the VACF and self-diffusion coefficients. The results obtained have been compared with MD
simulation data. It is found that our model provides the first semiquantitative explanation for the
density and temperature dependences of the VACF and self-diffusion coefficients of expanded
Rb.

1. Introduction

During recent years the situation pertaining to the study of static and dynamic properties
of the liquid metals (especially the alkali metals) has changed considerably. One important
development has been made by Hensel and co-workers [1–4] who performed neutron
scattering experiments on Rb and Cs from their melting points to the critical point. The
thermodynamics states chosen in the experiments are along the liquid–vapour coexistence
curve. This critical region is of particular interest as the metal Rb (or Cs) undergoes a
metal–non-metal transition. From the experimental results on the static structure factor
S(q), one finds that the numbers of nearest neighbours are almost the same whereas
the nearest-neighbour distance increases with increase in temperature. At low and
intermediate temperatures the dynamical structure factorS(q, ω) shows a collective density
excitation peak whereas at temperatures near the critical temperature the side peak broadens.
Theoretically, the main difficulty in studying the properties of expanded liquid metal is the
non-availability of the appropriate density- and temperature-dependent interaction potential.
The density and temperature dependences of the interaction potential arise owing to the
change in electronic properties in the course of the variation in density.

Recently, Kahl and Kambayashi [5] and Kahl [6] have performed molecular dynamics
(MD) simulation studies of expanded Rb for six thermodynamic states using the local
pseudopotential proposed by Ashcroft [7] and the Ichimaru–Utsumi [8] expression for
exchange–correlation. This potential has been found to be quite successful up to intermediate
temperatures as has been judged by comparing the MD results [5] with the experimental
results [1, 2]. The deviations at the highest temperature are attributed to the interatomic
effective potential. The MD simulation [5, 6] studies have investigated the static structure
factor S(q), the dynamical structure factor and the single-particle space–time correlation
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functions. In the present work, we shall be concentrating only on the theoretical
evaluation of the velocity autocorrelation function (VACF) and the self-diffusion coefficient
of expanded Rb. Our motivation is to study the effect of the density and temperature
dependences of time evolution of the VACF and self-diffusion coefficient. First of all
we examine the state dependence of the short-time properties of the VACF, namely the
frequency sum rules. We then use these in a model proposed by Tankeshwaret al [9] to
study the time development of the VACF and self-diffusion coefficient. This model has
already been used [10] to study the diffusion in liquid alkali metals, but only near the
triple point, and has provided very good agreement with experimental and simulation data.
This model has also been applied [11–13] to study the self-diffusion in multicomponent
systems, where it has provided the ratio of the self-diffusion coefficients of different species
in agreement with MD simulation data. From the present study of Rb we found that our
model offers an interpretation of the variation in the diffusion coefficient with the density
and temperature as has been judged by comparing our results with the simulation data of
Kahl [6].

The paper is organized as follows. In section 2 we present the theoretical formalism.
Calculations and results are given in section 3. We conclude the work in section 4.

2. Theoretical formalism

The normalized VACFC(t) is defined as

C(t) = 〈v1x(t)v1x(0)〉/〈v2
1x(0)〉 (1)

where v1x(t) is the velocity of particle 1 at any timet . The Green–Kubo formula [14]
relatesC(t) to the self-diffusion coefficientD, which is given as

D = kBT

M

∫ ∞

0
C(t) dt. (2)

The exact calculation ofC(t) is a complicated task as it amounts to solution of a many-body
problem except for a simplified description of atomic motion. One approach to study the
time evolution ofC(t) is based on writing it in terms of the memory function by using
the Mori equation of motion [15]. This approach, however, only reduces the problem of
calculation of the VACF to the calculation of the appropriate memory function but has
advantages as one can develop theoretical [16] and phenomenological [17] models for the
calculation of the memory function. The other way in which some physical consideration
of the system is taken into account is used to calculate the VACF directly. One such model
has been proposed recently by Tankeshwaret al [9]. This is based on separating [18] the
configuration of the many-body system into a vibrational part and a stable packing part. The
configuration space of the many-body system is considered to consist of a number of cells
characterized by some fixed configuration determined by the local minima in the potential
energy hypersurface of the system. The particle jumps from one cell to the other with a
jump frequencyτ−1. The effect of the cell jump is to rearrange the equilibrium position
of the particles after the cell jump. Within the cell, particles execute harmonic oscillations
with a fixed frequencyω. The waiting-time distribution for cell jumps is assumed to be
given by sech(t/τ ). This provides an expression [9] for the VACF given as

C(t) = sech(t/τ ) cos(ωt). (3)

Using equations (2) and (3) we obtain

D = π

2
τ

kBT

M
sech

(π

2
ωτ

)
. (4)
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The two parametersω and τ are determined by taking the Taylor series expansion of
equation (3) and comparing the coefficients oft2n with the short-time expansion ofC(t)

given as

C(t) = 1 − C2
t2

2!
+ C4

t4

4!
− · · · . (5)

We find that

τ−2 = δ2

4

ω2 = 4δ1 − δ2

4

(6)

with

δ2 = C4

C2
− C2

δ1 = C2.

(7)

C2 andC4 are the second-order and fourth-order sum rules of the VACF. Expressions for
these are known [19] and are given in appendix A. These involve the pair potential and
static correlation function up to three particles.

From equation (6) it can be seen thatω is zero for 4δ1 = δ2. This implies that, for
4δ1 > δ2, C(t) shows a negative region as can be seen from equation (3). However, for
4δ1 < δ2, ω2 is negative; then equation (3) reduces to

C(t) = sech(t/τ ) cosh(ωt) (8)

which for a long time behaves as exp(−1/τ + ω)t , representing a slow decay ofC(t)

corresponding to a dilute gas. The expression forD is then given by

D = π

2
τ

kBT

M
sec

(π

2
ωτ

)
. (9)

In the next section we present the calculation of sum rules of the VACF, the time
evolution of the VACF and the self-diffusion coefficients of expanded Rb.

3. Calculations and results

The calculation of the frequency sum rules given by equations (A1) and (A2) requires a
pair potential, a static pair correlation function and a triplet correlation function as input.
For the pair potential we use the pseudopotential proposed by Ashcroft. The expression for
the effective interatomic potential is given as

φ(r) = Z2

r
+ 1

(2π)3

∫
q2

4π

(
1

ε(q)
− 1

)
|v(q)|2 exp(iq · r) dq (10)

wherev(q) is the Fourier transform ofv(r) given as

v(r) =


0

− Z

r

for

{
r < rc

r > rc.
(11)

We use the Ichimaru–Utsumi [8] form of the dielectric function. For Rb we have used
rc = 2.47 au. This procedure of evaluation of the potential is the same as that employed
in the MD simulation by Kahl and Kambayashi [5]. In table 1 we present the densities
and temperatures for which we have calculated the potential. The well depthε of the
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Table 1. TemperatureT and mass densityρ of the six Rb states I–VI investigated in the present
study. σ andε are the parameters of the potentials.

T ρ σ ε

State (K) (g cm−3) (Å) (×10−12 erg)

I 350 1.460 4.197 862 0.075 198 52
II 373 1.440 4.196 285 0.075 672 48
III 1073 1.130 4.107 260 0.087 710 05
IV 1373 0.980 4.041 256 0.098 709 86
V 1673 0.830 3.950 153 0.116 712 9
VI 1873 0.640 3.765 076 0.161 359 0

Table 2. Values of the second-order(C2) and fourth-order(C4) sum rules of the VACF in units
of ε/mσ 2 and(ε/mσ 2)2, respectively.C42 andC43 are the pair and triplet contributions to the
fourth-order sum rule.

State C2 C42 × 10−2 C43 × 10−2

I 120.55 216.03 109.30
II 117.13 215.73 100.07
III 72.293 175.09 72.572
IV 60.462 159.95 14.400
V 39.743 84.332 6.2043
VI 23.884 38.279 1.8460

potential and the distanceσ whereφ(r) becomes zero is also given. The first and second
derivatives of the potentialφ(r) are determined by taking the derivative of equation (10)
with respect tor analytically and then performing the integration numerically. For the static
pair correlation functiong(r) we have used the MD simulation data of Kahl and Kambayashi
[5]. The triplet contribution to the sum rules is evaluated using the Kirkwood superposition
approximation. Here, it may be noted that the use of the superposition approximation does
not introduce a significant error in the numerical results of total sum rules as has been
demonstrated earlier [19]. The numerical integration in equations (A1) and (A2) is done
by using the Gauss-quadrature method. The accuracy of our numerical results for the sum
rules is better than 5%. The results are given in table 2, whereC42 andC43 represent two-
and three-body contributions, respectively, to the fourth-order sum rule of the VACF. It can
be seen from table 2 that, near the melting point,C43 is about 50% ofC42 whereas, at
the highest temperature, it reduces to only 5%. This implies that higher-order correlation
effects are important at high densities and low temperatures. It is also noted from table 2
that C2, i.e. the Einstein frequency, decreases as we go towards the critical point.

The values of the sum rules from table 2 are used to calculate the time evolution of the
VACF C(t) by using equation (3) or (8) and equations (6) and (7). The results obtained for
C(t) are shown in figure 1 as solid curves for six thermodynamics states. The MD results
of Kahl [6] are shown by open circles for comparison. From figure 1 it can be seen that
our results are in reasonable agreement with the MD data and qualitatively all important
features ofC(t) are reproduced. It is noted that for states IV–VI our model does not predict
any negative region in the time development ofC(t). At low temperatures corresponding
to states I and II the tagged particle is trapped in a cage formed by its neighbouring atoms,
which results in a negative region inC(t). At high temperatures the cages become large
and finally disappear and then the particle can move freely. This is evident from our
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Figure 1. Variation of the normalized velocity auto-correlation functionC(t)/C(0) with time
(ps) for six thermodynamic states. Full lines are our theoretical results. The dots are MD data
of Kahl [6].

model as in this caseω2 is imaginary; then the oscillatory motion of the particle in the cell
is no longer present and the particle moves only in a translatory manner. However, our
results onC(t) are not in very good agreement with the MD data for all the thermodynamic
states investigated here; it provides important information about the density and temperature
dependences of the VACF which is one motivation for the present work.

The values of the self-diffusion coefficient for the six thermodynamics states are
calculated from equation (4) or (9). The results are given in table 3 together with the
MD results and experimental data given in [6]. From table 3 it can be seen that near the
melting point the agreement with MD data is very good. The deviation of our results from
the MD data increases as we go from state I to VI where it is about 30%. Here, it may be
noted that the self-diffusion coefficient for state VI is about 30 times that for state I. Thus,
as the same procedure is used to calculate the self-diffusion coefficient for all the states, it
can be said that the agreement of our results with the MD data is reasonably good. Overall,
it is gratifying to see that our model is successful in explaining the density and temperature
dependences of the self-diffusion coefficient of expanded Rb.
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Table 3. Diffusion coefficientD for six thermodynamic states of Rb.Dour, DMD andDexpt are
the results obtained in present work, in the MD simulation and in experiments, respectively.

Dour DMD Dexpt

State (10−8 m2 s−1) (10−8 m2 s−1) (10−8 m2 s−1)

I 0.302 0.298 0.352± 0.014
II 0.345 0.454 0.418± 0.020
III 2.421 3.429 3.661± 1.8
IV 3.944 5.675 6.047± 4.4
V 6.279 8.483 9.346± 8.4
VI 8.664 12.303 14.18± 14.7

4. Summary and conclusion

In this paper we have evaluated the second-order and fourth-order frequency sum rules of
the VACF for expanded Rb at six thermodynamic states along the liquid–vapour coexistence
curve using the Ashcroft pseudopotential and the correspondingg(r). These sum rules and
the model proposed earlier by Tankeshwaret al [9] were used to study the VACF and
self-diffusion coefficient. The results obtained are compared with the MD predictions of
Kahl [6]. It is found that our results are in reasonably good agreement with the MD data.
Our model uses only the interatomic potential as the input asg(r) can be generated using
integral equation methods. Our work provides a first step towards the development of a
theory which can predict the transport coefficient of fluid metal at any thermodynamic state.
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Appendix A

Expressions for second-order and fourth-order sum rules of the VACF are given as

C2 = 4πn

3m

∫ ∞

0
dr r2g(r)

(
2

r
u1 + u2

)
(A1)

C4 = 8πn

3m2

∫ ∞

0
dr r2g(r)

(
2

r2
u2

1 + u2
2

)
+ 8π2n2

3m2

∫ ∞

0

∫ ∞

0
dr dr ′ r2r ′2

∫ +1

−1
dµ g3(r, r′)

×
(

µ2u2u
′
2 + 1 + µ2

rr ′ u1u
′
1 + 2(1 − µ2)

r ′ u2u
′
1

)
. (A2)

In equations (A1) and (A2),u1 = ∂φ(r)/∂r and u2 = ∂2φ(r)/∂r2. The primes in
equation (A2) represent the fact that the argument of potentialφ(r) is changed tor ′. g(r)

andg3(r, r
′) are the static pair and triplet correlation functions, respectively.n andm are

the number density and mass, respectively.
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